
AD-A1uG 315 NAVAL POSTGRADUATE SCHOOL. MIONTEREY CA
ON RORUSTNESOFOA%#OCK DETECTION ALGORITH4MS FOR OSTR!RUTEn -ETC0

FEB 82 D Z NADAL.. MI T GEHL

UNLLASSIFIED NPS52-8.2-OO1

iiII~i~m I III~ "'Ii

Lll
I..0

1111"2511 _iisi _

MICROCOPY RESOLUTION TEST CHAR1
NATIONAL BURLAU OF STANDARDS 19b3 A

NPS52-82-001

NAVAL POSTGRADUATE SCHOOL
Monterey, California

,ON ROBUSTNSS OF DEADLOCK DE= ON ALGORrnM FOR

DISTRIBUTMD CCMPUTING SYSTIS

Ll
__. Dushan Z. Badal and Michael T. Gehl

February 1982

pproved for ublic release; distribution mlimited I D TIC
Prepared for: L E 2 I

Naval Postgraduate School2
Monterey, California 93940 E

03

NAAL POSTGRADUAM SCHOOL
Moterey, California

Rear Admiral J. J. Ekelumd David A. Schrady
Superintendent Acting Provost

The work reported herein was supported in part by the Foundat ion Research
Program of the Naval Pos tgraduate School with funmds provided by the Chief of
Naval Research.

Reproduction of all or par of this report is authorized.

This report was prepared by:

DUSHAN Z. BJ~
Assistant Professor of
Ccutuer Science

Reviewed by: Released by:

Depatmen ojoDean of Research

UNCLASS IFIED
SECURIT CLASSICICATION OF THIS PAGE 'When Doe Entered)

REPORT DOCUMENTATION PAGE BFRED CMSTRUCINOS_____________________________________ BEFORECOMPLETINGFORM
IEPCRT -MSER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

NPS52-82-001"
A TI'%E 'and Subtitle) S. TYPE OF REPORT A PERIOD COVERED
On Robustness of Deadlock Detection
Algorithms for Distributed Computing Technical Report
Systems S. PERFORMING ORO. REPORT NUMBER

7. AuTrOR(s) S. CONTRACT OR GRANT NUM8901R(s)

Dushan Z. Badal and LCDR Michael T. Gehl,
USN

9. ZERFORMING ORGANIZATION NAME AND ADDRESS I 10. PROGRAM E .EMENT. PqOJEC'. -&SK
Naval Postgraduate School AREA & WORK UI.T ... S

Monterey, CA 93940 61152N;RR00-01--10' N0001482WR20043

11 CONTROLL ING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School February 1982
Monterey, CA 93940 3. NUMSER OFPAGES35
14. MONITORING AGENCY NAME & 4DDPESS0'II dilferent Irm Controlling Office) IS. SECURITY CLASS. (o this report)

UNCLASSIFIED
1S.. OECLASSIFICATIONi DOWNGRAOING

SChEOULE

16. DISTRIBUTION STATEMENT /of this Report)

Approved for public release; distribution unlimited

77. DISTRIBUTION STATEMENT 'ol the abstract entered in Block 20, II different from Report)

9. SUPPLEMENTARY NOTES

This paper has been submitted for publication and if accepted it
will be copyrighted for publication. It has been issued *3 a
technical report for early dissemination of its content

19. <ZY #OROS fCantinuo on roverse side If noceeury and Id mtify, by block num beu.)

Robustness, Reliability, Deadlock Detection, Distributed Computing
3ystems, Failures.

20, .%OSTQACT 'Continue an reverse, eld@ It nocOeeiy and identiy by block nlember)
I In this paper we investigate the robustness of several dead-

lock detection algorithms for distributed computing systems. We
analyze the behavior of each algorithm in the presence of two
zlasses of failures - lost messages and single site failures. In
the case of single site failure we consider six different tves of
s tes depending on how they can participate in deadlock and dead-
lock detection. The observation and conclusions made in this

S1473 ION. osV ,5 OUSOLET UNCLASSIFIED
IEC Jhl' :..ASSI1CAT:ON OF - (S SAG9 een Zee Snfere a

UNCLASSIFIED
_-.4jITY ClASSIFICATION OF TMIS PAG l(CW n Date EntoredJ

.paper are intended to show how robust the present algorithms are
and to provide an insight and better understanding of distributed
algorithms robustness.

\~

4 ~ - ,.' '*3"'-." .. r...

S a c - - z - I,. It - 3 4 " O L

2usnan Z. adaJ. and '!1i~hael 7. CrehJ
Zomruter Science :epartmen-
:I1aval Postgraduate Sno
Monterey, 3talifornia 93094D

In tni~s paper -we investigate ' he robustness of severa1 ieadizock

detection aigorithras for distributed S-nutr sterzs. '.e analyze

the behavior of each aJlaror, h, 'n ezeenef o leesf

failures - lost :nessazes and sin.gle zite failures. :, ase Df
single site failure we consider six 'aifferent ples zsie eea

on how they 2an marticipate in ieadiock and Ieadlock 4etectin. T-he

observation and ,conclusions -iade in this parer are in-tended :o sho-W

how robust the cresent algorit!=)s are and to nrovide an is' and

better understandin-a of distributed aloritlams robustness.

Justr.to-----

?rylblt D11" TA

l t (~an J.*,, d/or -

UjA-A

'here h-ave been many algoritm=s zubiished for deadlck etection,

prevention or avoidance in centralized multipro;Taming systems. The

problem of deadlock in those systems has been essentially solved. :n

the nast decade there has been considerable work !one -n distributed

3or- e" ne-tworks and mUltirrscesscor nset.~''~tece are
-redecessors)f iistributed oomnutina systems ;: a re - a

fccus of intensive research and develonment in acade.ia and industry.

M.any techniiues for concurrency control, reiiability/recovery or secu-

rity developed for centralized or single .PIT) systems have been or

are being adopted and adapted for distributed computing systems. ?or

example, there is a tendency to use locking as a general synchroniza-

tion technique in distributed systems and its srecial variant, two-

_tase locking, for distributed database systems. Tr until recently it

has been argued that the frequency of deadlock occurence in exIsting

applications is so low that the problem of deadlock in distributed

systems is not very imnortant and therefore 2an be managed by adoptina

techniques developed for centralized systems. However, it has become

recently apparent that deadlocks may be a problem in the f'uture as ie

see new applications featuring large processes and/or may ooncurrent

processes or transactions[GRAB]. As an examrle of s uch new arpl_.a-

'zons we mention inforation stiliy systems ;.i ,ich service oOncurren--

ly hundreds or perhaps thousands of 77 users.

The distributed computing systems are characterized y the ab-

sence of 4lcbal memory and by message transmission ielays which are

not ne2liible. .dditional.y, the processes oneratina at the -ame :r

iifferent 3ites a. -communicate wit:h each :ther, nd s n sare

re'ou.rces. f l:ckin- is used as rhe ror'.-ir. echr'i 'e. -en

the last two items raise the nroble-s of leadlock 3ccurence i-n distri-

bu'ted systems, -and -,he first two characteris=tic!s ofv 1 ist rJ b'ted4 svs-

temrs :nake it much,- ore Eff': -ult -,o detect, avcii :r -revenn -hsr fn

-,he earlier muJtiroaming centralized computing systems.

:eadlock :)rever-rion and avoiJance alm-rithns fo)r a 4o43trimied

m Cu-Ttina systems are niot efficient. Preventzion can be accomntl-4Ishe

cr, !o3 allwinp 2oncuirrent zrocessfnj, by si,*:rinies Indj

allowina)reemp tion, by re-uiring a nrocess to acoufr=e -all resounrces

it -gill need before it starts, or b y hnavina no loks* equirin2

sequential execution in a distributed system isafoswe oIf

resources. zain crioritized rrocesses -will result in l r

orioritied nrocesses beinga restarted many tirnes, with a na-or Ae-arada-

"ion i n system ef-ficiency. Dynamic prioritization -would be a -ommIex

alzrithm by itself0. A process may be unable to deterMine itS Minimum

set of resources, and therefore -would have to acciuire the ze-11 of all

probable aend possible resources, even thouti it may not need 'hem. ':n

addtininsystem inwhich messa-aes are treated as rescurces It is

imnossible to determine in advance which messaees will berequired.

Having no loo:ks W.- result in latabase inconsistlencies, assuning a

non-ortimistic concurrency controller. Similarly, d1eadlock avoidance

alrorit;hms, -which either calculate a 'safe path' r3 CL7, o:r never -wait

-7a l3ck 23PA7801 are also inefficient. aent l~rtn eur

non-triia er :xecuti;on aie nd m-ustI be ;.one each niea resource

request i-s to be granted. "ever waitirii for a l.ck,- IS inefficient

wghen leadlock is a rare :)ccurLence. Thus, in- distribulted cmrutin;!

systlems, deadlock detection an,; resolutio,:n -loihn ust ce ;se's.

There are fo'iAr 2rineria ha: anr leadl ,-k de-ect ion a ribf. r

distriUte ooruin syTne s t me. ~ ae o ~

.o'cus-tness, 3 rerformance, and -1 nractioality. ?Jorrect-ess refers

-o he abili4t;)f the Czlorithna to detect all. deadlcks, and the aoci-

itT toc not detect any false deadl:ckcs. 7Robustrness refers to the aLbi-'-

tv of the algoritbm to be correct even in the presence of antictrated

faults. -his includes the ab-ilitri to detect deadlocks even wh'en a

Atie aIs or loses 2onLnicati*ons whl he deadlockr Ietectiontc

-,L ', -e'

ts vernead -h d-o avs betwneen dedok and detection, LT: -71

usied, number of mnessages required, et.Practi--cality is CloSe>7:e

ncaed to cerformance. :trefers to asreots such as conniexityZ and

S-everal different anproaches are being used in current deadlock

detection and resolution algorithms for distributed systems. W'2-o maj4or

anes are centralized and distributed deadlock detection alp-crithns.

.-ithi'n the distributed class are two subcl'asses; Iall or s-everalu

sites execute the deadlock detection alxrrithr,., and 2? oInly one site

is actuiallyr executing, althout the ali-orithi is resident in all sites

and thusQ any site could execute the elicrithm. :t1 mitzt be easier to

view's he alzori-thms as a continuum: fully centraJlizedf -A'72?,1

hierarchicalf'-J971, distributed with a :Sinale site -at a time execut-

ing the alq-ritbmnCL77, distrib uted with all si tes involved in -a

rcssibcle deadl:ckr -xecuting- th2oot oncurrntlyZF, n

distributed with all s it es :?Xecumi.na the al zrthm

n3ncurrentlyrs>9]

:n t.his caner we investiRate the robustness of several rublis4hed

deadlock detection and resolution aliortms for dist ributed ,ystes.

The mtivation fo:r cur 3or coes from hre facts. Ti V.terr7 few

authors %rn'vestizated rot'11trnessz :r el!iilt o iada' ort4v

alv~rithns. cod reliable iead..ock letecti1on and resolution focr

-zncc:=2 new iistributea ssems and arlia n is in ur :c rnicn an

argoen-, veryT imnortant and as yet not satisfactocrily resolved oCroblem.

Thras there can be more than one ieadlock being ietected ')7 th-e

4eadlock letect ion q' zrT"thi then it is reascnal-..e to exoect su'-

alzcrithm to '-_ robust, i.e.. to c ontinue execu-:in~ -?nd all'~'~

dea1lcck1s even 4in th -resence of fail-.re, S~~"i <o

:ec crake me o)f the deadlcok - beinz letected.,

:he oaner is orzanized as follows. in sect-4cn two, w~e j1*Z--:-:

robustness of listri'huted syst;ems. in section three, -we Lalyze 'he

robustness of several exis-,tinga 4eadlock letecti4o-n litms*i

reszect to some single failures. in aection four, -we -,resent o.ur c on-

:clusions based on the analysis Of section ..

::. ScLE T.OUG7-- ON RCBUSTESS ::T DISTM=Z .7' S72!,S.

in nnh.S nazer we wantL to investiza-.e the rob'ustrness or leacdlck-

detection alqorithns i-e., we -..ant to find cut the imract o

3ome sinale failures oIn such alacrithms. in -7enera, the DDA -

yoked bCy t-dC events - either w..henever a process .aits :ra resour e,

(or after a certain neriod o' im has elapsed since the last DrA invc-

c2atrn :n the first c ase, ieadloc'k is checked for -whIenever it- -Cs-

-i---i t:7 arr.7ears, a:nd in 7he seconi case it'- is ~hcefrror- dc

ir .e., regardless ,,f wh.ethner its ro0ssibi- exist

::.e TIDA can reside n mne, zeveral -,r all1 zites of-te 4.stri'rut-

ed 2-1mcutiniz sys-tem. Th' en a -riFqerinq event f-r:crs ir

oeenring 3n a rarti-c'lar alzori'm ome, svr '

recei,.e in'oto fo eec o Zttc.:frmt

arcs of the wit-for zraph, strings, or lists of processes or transac-

tions. .ron receict of such infcrmnation one, several or all i-tes

attempt to reconstruct a global state of the iistributed system, i.e.,

to -menerate a true snapshot of all or of all waiting processes in -he

system.

7..e generation o_ such a tr.e Znarshot in the distributed toz -7 qt

:z £!ffic'tl because -f lack -of zcobal memor7r and the essame ielays

i are -ot nez--i'ible and casLn vary consiierably. The zeneration :f

such a true snapshot, usually referred to as a global wait-for -raph,

becomes even nore difficult when we consider a Dossibility of failures

.the .istribued system. Zome system mechanisms have been iesigned

to be robust or reliable. For example, some concurrency control or

synchronizat:ion mechanisms for distributed databases and trrsaction

processing systems are based on two nhase locking, which has been nade

robust by incorpcrating atomicity by using two phase commit protocols.

The t-wo chase commit protocol supports not only the atomicity of tran-

sactions but also it supports the robustness of locking, i.e., the

robustness of concurrency control mechanisms. ,n particular what

makes the concurrency control which uses locking robust is the need to

lock and unlock resources in a robust way, i.e., either all

look/umlock operations for a given process or transaction occur or

none occur. Thus in some sense, the robustness of concurrenc, "cntro-..

-a meant to support. the atomicir of placing and releasing a set

locks needed !7- a nrccess. :n other words, the robustness of c on-

2urrency ontrol neans that no dangling locks or locked resources are

left hind the terminated or committed process, even in the _resence

o some failures. :t is interesting to note that al-hc'ij ie-a d:c

letecticnr a tart of concurrency control rased on locking, -here :.az

'p"m

zeen no attemut to troviie for 'or even to inet o he rbstess

of _Ioo etection omecnaniSrns. The -most li&yexrnaior. --'r

-'~s :5tat fro -,he n=currency cntr'-p"n to)fi 0: v-w, -,-e InaC::oo

*.)f the nrocess to lock a needed resource is an excention to be hadied

-ti anc"ner mecnalvism, i.e. , a leadlock dIetection alm-crith= -- A

The ncer wwy to see the D)'A is is another trnsactio_,n :unr.n=

za7v..es w;i*"n oonourren'c7 "ontro''ers and :)ther trac'sz? -

DA is -a Sccial :raznsact_.7on -whiich Drerates on Srecin_ 4.-,

solely for deadlock detection, e.g., wait-for zranh-s. su",ch data,

we'2J ca.l i4 leadlock data, is internal to eac invocat ion o-f D

transaction and is erased after its execution. 'Ioreover, zsuch

deadlock data is not shared by any other DA transacti4on invctions

and therefore they need not be looked. This means t,-a-, :he robustLness

reouired)f D:DA transactions is of' a somewhat different ',ind thanth

-ooust-,ness 3f transactions Dceratinaa on shared iat1ab5_-; - Thus it

takes sense that the :DA transaction does not need -.o- iuse two 0t.Rze

:=nill to assure its robustness. The auestion then Is what kIir 1, of,

robustness or fanit-tolerance we need for DEA -ransactions and tis is

-recisely the nrohle. -we -are addressing in this raper.

We consider the fcolowina infornral nodel of 'DA ransaction exe-

cutior.. The DDA is invcked by- a noncurrencr oontrclle-r a:- -a 3.

on ' a dcLtabase transaction 2an not. acnuira -,cz nc T

h-eldi 'y anoth".er transaction, s'. 'The DDA transaction iexecutes at, =ne,

-everal or atll sites d4ezendinsz on the ::A itself an th-e -ead'look

tocol ~ ~ ~ ~ ~~' 7 ' rn t xeurnte'Aorrsoir."

-nessagaes -c -he concurrency cc-ntro7 1er which h.as tri_.'ered

Trcee - ecause f a) no leadbcck
b dea'f~ook etected ~~aznct '.er
transac"t-,on --as selected as
a victim '-Or back-un

2 OAcrt - eas f a' leadlock letected and TrCU are
-- e0

b' ::A transaction failetz, i e.,
_'t lid not execute.

.3 zia*:n we nvest:-_m-e 4n -- ise4 wren :rSac-

nF .r 3uld not fail i e., ?oCW rcbust4, -nxdtn D'

:r c'o e.:n thi s tamer we consider only t04o classes 7

:aues. ?rst , -we iesi t te imrac of' lost messa--es and

. ec=r , we 'r.vest:zate the imac- of one 34--e failures, or 'idennica_-.y

one site cartitions on DDA behavior. W~e investi~ate the impact, Df lost

!messa.-es blecause not all. distributed s7!stems na7 surrort relI'able

le--.:very O:L messages, several P!,zoriths treat messaa-es as

* escurcesL 'ClT', and in sane azclications, acllowledzernents cannot b-e

:n tnis section, we examine four mublished deadlock letet'

al_-ritins for distributed computing 3ys-tems with respeco to the nres-

ence of the two classes of failures lost messa-ces -iad3 -' i' es

3:sCIUSed in secn-*sn twno. Altho-u-t -er :'w:-oe ave already been

.:nvr to ne c-orrect w..hen no - :-ures or errors Dccur, *.fe feel that1

--air rcuzness i-s nevertheless wort aralyzi-. ng. -he assunrtiorns

r-ade t; ach auth'or will be discussed in -:he context ,f '.ow rob0ust the

*~~ ~ *i xi± enj' c-" n' z~ r, e"~'

resv1zrze -ad a sizl -rarsaction. l:hese restrictions merely make -.,e

ex~ze ~rerthe~ arer-c recuired fOcr the ?.r-ays Te -n -ia

,sse" Starus -3 ' on _iue~ r=nsacz-.zn --' a- zit

rescuro:es R2 and R7 and is waiting for resource R4. 1ransact ions :27

-and 1- -old no resources. Thransactio n 74 at site : holis rescurce ?.

r-ut 4-s active. We assizme -,-a-, the leadlock letecticn activ-_-r result-

*7. nt-: -r 4ha2 -een : Cee-,no:ereisz r

no 4-eadlock letect -'on a3ct4_v4_7 in the 3yetem. ?or ± ~rt~

*.-:r.rea:u_,e 1oa ietanwe assimi tlmestn 'Sr ti to --e

~-2assiimment, t2 to -he T4(-R4 assiznrnent, t7 to the '7<-?-_

azs-4-ment, an~d t4 to the- 71->R.4 reauest. ','OW at some time -.6, tran-

-acticn 74 requests :7, resulting in a aloba. deadlock 71->4l >

~3ite A 'il ite C S Ite D

Fiaure 1,

n~ the :ase of' a site failure, we distinouish the following oases. a'

A 2ie an r-ave, a transaction involved i-n a leadlcck 'ut no e4

.. ~ ,, 4A~ -. ,- -" '~ a site =a s-ave o. transact-2n i-

-olved in -a iec -c u nd *-e involved in et ecticn, o a site ansve

a resource invc'.,ed in a 4.esdlcck and not bIe involved in letection, d

-a 34-te can h-ave a riorc nvolved in a leadlock and b e involved in a

4.etection, :r -?' a site- :oar b-e involved in ieadl.ock letection 4-t:r

-:o inf 1.~' -. 'al f -,-

A. 7H DIS72= ~'Z A IK _C'=ECCT A.ACI~N V

:n JC"7,cldian nresent's .wo deadlock 4etec-4-sr L

ritbhms. 'n!7 -,he distributed version will '-e considered in thsca-

per. A ?rocess Yanagement M4odule (?V)M at each site =adles resource

_nIUccat.-on and deadlock detection. An t -ordered blocked rrocess l4-s'

BPis a list of process names, each of which is waitina -Ocr access

arescur-oe -issiged to the opreceeding roCess in -7- *-s7

-as. iorcess _n the 'ias is either wa--tina -:or -_zess-.o -te rscur.ce

named, Dr it as access to that resource. .Ln BP-I is c-reatePd each-

time a PMTh wants to see if a blocked process is involved in a

deadlock. :-n -,he distributed algorithm, an BL Is nassed from a P.-.T

to another MM~ which has information either about a resource or a

transaction in the CBPT which is needed to exteand the D2PT. Each ?r4

adds the infr rat.ion it Imows, and either detects a deadlock, detects

a non-deadlocked state, Dr passes the E?~ -o another '?" fo~r : rther

ex-cansion. T-he -terms trocess and transaction wili b e used syncn 7ncus-

ly in the gnai.Zsis of this DDA. if several transactions are w.,aitinlz

on one transactior., -.ultirle oopies nay be made of the CBPL and sent

to each site 'havin2 :one of those wamiting -ransactions. Processes can

be in either)f 2 states, active or blocked (w-aitina). A blocked rro-

c ess c ould bCe waitinc, for a database object, nessage text fromn another

tr-cess :r neza- -ext from an -ocerator. roo:ess is activre

isnot, block ed. Th te a.~ i;z ?H. a3nd are te~npcrary var-*abes

rerresentina a 7crocess :r resourcze. -he sters of tealacrith~ are:

:et t :-o t.he ial-ae containe,! in..e '- re i dent ification
torionof he P1. f -- e~en-ts a 1:cal zSc.re

_et ?Xbe 7trccess 2ontrol-,ina -f3 ? is al read- in B?,
thn-here --'s a 'ieadlock. - noc to

4 - is '-:)a' -o c nourrent -:- c -7o t,:h~is o o-

PX DII4s active, t-here is no ieadlock. iscard ^_3-_ and
halt. :therwdise ?o to 3

3.Add -, o 3_ P.. snd -o to '.

an d -:X acdto PL. Send F to -"7 in si-te in whith'

;erfytha Lstrrccesc 'n ^n~ as %ccess -) 77
ncn.. there is no ieadlock. sc ihscard "E21 and hlt. 2c,

71 :ast -rccess in CEPL is active, -,here Is no deadlock, sc.
discard CEPT and halt. (Otherwise 7o to ' I

'0. 'all. resource for which last -rrocess -:s waitin-a ?X. if RX i s
-7al o to -7. -.therwise go to

!I. ?lace ?.X in CTP1 and send FPI to - T 3 sit-e in whih 7
resides. Halt.

zure .z srows t'-e actions tqaken at each site duringr tlie

e xecu.ion :f the DA following the reque st b y 7_4 for resource 17. 1The

rmmbers refer to the _,urrent step being executed by, the 7A. Asca

te seen, the algorithm morrectly detected teresuiting; deadlock, in

an environment of no faults. if, 'lowever, a 'nessage I's lost "in cur

examrle, eiter the '-P- sent from sie to A, o2r the -BL sentr from

A to -', t.he necessaryr in±'ormatior. to d-etact, the deadlock be

and the w~rth.;il l to aeec n ex.iSt ing- deadlock.

Site A Site Site

'10. Create ::PL ith
4_. 'Set R-{ = R 5

3 Ti controls R
TI not in BPL.

4. 7i not local
7. Add TI and R3to

B3PL and send
site A.

I. Set FJX = ?-
B. :1',as access to R3.

q). :et X
I. Add ?4 to =3?L,

send -o site D.
I. Set RX=R4.
2. TI waiting for

R4.
Cet PX=T4. T4
already in SBPL,
deadlock detected.

Figure 2

Soldman's alorithm allows the following tyes of sites lis-

cussed previously: t. pe b (a site can have a transaction involved in

deadlock and -he site is involved in IeteCtion'/, typ e i si' e can

have a resource held by a transaction involved in deadlock and the

site will be involved in deadlock detection), and type c 'a site can

have a resource held by a transaction involved in a deadlock and not

be involved in deadlock detection). A site could also be in several

of the categories above, depending on the complexity of the system

state. ?or example, site D could be considered a type b or t7rpe I

site. :f a site of Ty.e b sites A or ' in our examle)l fails iurina

executicn 3f the DA, the behavior could be iifferent depending on the

time of the failure. :f the failure occured at site A before site 5

sent the BPL to site A, site C would realize that site A had fa.iled.

-he alcrithm includes no procedure for this occurence, so the

.e.avir ";ct.l! '- e 4-cendent on he'urder!yinz system. :f the failare

at_ ,,, afer i receive'! --e :-?. all' ieadlocmc netec7n lln

a will cease, because only site A was currentl invol ede in

ieadlock etection. A sys-tem t-imeout mechanism would eventually -rcr'

t:- :.ransac-irns invoved in the deadlck. A failure at site .

have the same effect as at site A.

f a site if -Pe d:site C in our examrle' failed, the time

of the failure would azain determine the e rof the 'A. -

fail'ze scoured before size s ent the -L to site A, dead> rates-

tisn act"ivity *wou!l± :ease without, dedocaving s-een det ectei.

:se BL had been sent, however, deadiock etec-ion would :or-inue at

sites A and D ('seauentially) with site D detectini a deadlock. _he

failure of site C would not have been critical after the B ^ad 'teen

sent. The effect of a type c site (site _ in our examrle' falling

would have no effect on the behavior of the TEA, because the fact that

-2 is held by TI is not uised or mnown by the 3EA ait any Site.

There are essentially two types of :Bm's created nv this

MEA. The first ty7e, call it W, is when a -rocess :s waitini, but is

not involved in a deadlock. This IBPL is subsequently discarded. Th-e

second type, call it D, is one which .ill eventua_ ly show a deadlock.

cycle. -f there are n transactions involved in a3 1eadlock cycle, this

DDA will create from I to n type D 2B212s. :n -ur example, only one

was created. f the request by TI for resource - ha.ened simultane-

cusly with the request by T7 for resource 3W, two_- PL'S would have

seen :reated wnich would have resulted in -.wo sites independen--,

etecting the same deadlock, vice the one site in our examnle. Thus

the robustness of this alorithm trith resrect to a single site failure

is related to the ratio of the number of - t7,e .3PL's created to the

-.uZber of transactins involved in the deadlock. This ratio so" -

m -.ined the zeauencing or timing o ranac-ions

.. .. " -- " -- =-- -=- --- am an mm •4

'-locked resources. 3uo,,zh seouencir.R Is -)f randcm nature. A ra-,io :)f 1

.wculd cro,,4 -I-hIe *ic~nest decrTee of rTbustness. When only a~n1

=? is created, the robustness of th e -'-A is very similar to tha't of

a c!entralized DDA; a single site failure 2sn stor deadlock letection

activity. .1e :!onclude that the robustness of this DMA can '-e anal77sed

o Ut it ai not '-e Tredicted.

-n " 'erasce ?ard Iwooz oresented a ite

deadlock detection algcorithm. 3.4t~or and 37hattuck GJ:3CI o)resented a

counter example which shcwed the aortmto be incorrect in that it

failed in scme c ases to letect a 4.eadlock. They also c rorTosed R

modification to the algorithr- which they thou-C+t would make -

c2orrect, but they felt the aLgorith was '-ratia8 :n-A1i

'isa ade 1 rdhothat t he aLzoritrn as modified by :;!i.-or aM

Chattuck is ilso incorrect. 'Tevertheless, we will investi-a-,e "-

enanced a.l.orithm i.e., it*-s modified version as su gsted -ov 3Jl-zcr

and T-hattuck) in the presence of errors.

:!he -:leorithm 2onstr-icts a ? ansaction-4aits-For '7W.-' rn

at. originatIng sites -,f transactions which are notenti4ally involved in

the leadlock being detected, and at sites at which Zorme transaction

could not acauire a resource. "TodeS in the 7~F -yrachs rerresent trsn-

3aoticns adz1e indicates that trnsaction i s3 ii

for transaction ~.A non-blocked transaction is a transactio:n

is not wa~t-*n- and Is renresen-ted in-he 74"r raph byande Lt

out~going arcs. A blocked transaction is waitinR for some transacticn

to finish. A '3locking set' is defined as the set of all non-bbo:c'k

transactiorns whric:h :!an bte reached '- fcoI.owina a iirecte'i4 oat1 in

77 z-t .~ar-ina at :h nc~ associated *rith 7rsato -77_.

"air TY _t 'bl -ck4n na ir' of i P s in 7"- bcknz ze-

Af '?cten--al 2icckinz set' ccnsistS z f all -wait ing trssct ions

hat can ",e reached -to : ::15C. Sorig(mean~s the zite z r~r

of Iransaction T. Sk is the site ourrently executina the a.,7rithm.

The :'les -whim: e::ne th e enhnanced algor'ithm, as execute4 =-:sie :7k,

are:

'-l I he resource 9 a -e _-7. 29rnot "-e allccat es4 7r
sact:_:n -. ,.aseel :k. { Add 2' arc :r'-r:~~~, toeah - transac t P ... ,.ee sthr
CYC~.e formed in the 7JF Qnh, leadlock has b-een iJet ecte 1
-therwise, for each transaction 7P in 'b...clei:nga zet, 7-n
the blockina mair '707'' to Oorig(z iforig' 3 an!
,o 3rY'if 3oit3.Tr a ist~fceta.

blocking pairs associated wit 7.

Rule 2: A bb1ckin-a rair _ ,T I's recei'ved. Add an rcfrom-
t o Pl in -he 7iF -rarh. '-f a ,cle isZ 'fzr7ed, then a
leadlock -?xists.

?u2.e - 2. :f :t' 13 blocked and .3criz'~ Sk, then 'for e-ach,
translictio ' in the - boina s3e~, Send -the hbLckiniz

Rule 2.2: :f' -is itin-a and Son _= k, then for each --
ten-tiasl *bloc*kin,7 nair Ky,~send th blockina car. 7",-
to S7ong, ~T if -7orig, " - / k. 'T.en, liscard -the t aen-
-ia!. bcin ains K:V)ani erase th:e 'waitinc' narl-m

sir snows t.he -acti4ons taken at eahs;ite luring the exeou-

.-:nr if t-e DD.1 f-,oin he re'mest 'r. TA f'Or resource J.As !!an

eer, -7"e wed~g as mnec- ecte :'sieA, In absence m

-allres. -,e recuest -iessa.ze- 43J from site Z o Sit ..e ;

.cst , ic-wever, :ealck7 wcet natvt oull --ease. :f the 1'ICloc-

r 7 air. -2ite -'3 -~ site A -;zc',1dstil

4etect t*he ia.:k oee h'zci. arT- rnst

-. ~ ~ ~ ~ ~ ~ -l 2-' .'- c~i d~ 9

4.

Site A Zite C Site D

Di > 43 :4

O. T. marked waiting
(T4,R3 received)
1.

T4 -> TI

2lockini set(T) =

Send '74,T1' to D
A.

Potential Bocking
cairs = l.

,. ',T .recei,,ed. -_I' received.

T1 -> T T4 -> TI

Deadlock Detected.

Figure 3.

This algorithm allows sites of types b, c, d and e, althouot

our examnle does not include a site of type e. :f a type b site one

having a transactlion involved in the deadlock and the site is also

involved in ietection} failed, in our example site A (or site DI, the

behavior of the algorithm is denendent on the time of failure. :f

site A failed before receiving the blocking pair site C would

reccmize the failure, but its action is not specified in the rules of

the MDA. Site D would not detect the deadlock for the same reson as

if the messaae from site C to site A was lost. if, however, the

failure -cured after site A received -.e blocking rair, deadlock

letection activity would -ontinue 'at site 3" but deadlock would not

be detected. A failure of site D, also a type b site, at any time,

would have no effect on detectina the deadlock in this example. :f a

:pe - size failed (size 3), it would have no effect on detectin -he

deadlock. f a tyre i site site 2' failed, the time of its failire

wouli letermine the behavior of the :DA. :f it failed before sendinz

the blocking 7air tc sites A and :, leadlock ietection activity .ould

:ease. if 4 failed after sendina those nessaaes, it woulld have no

effect on -,hin <he eadlock.

For our example, this algorithm behaved surprisingly simi-

arl to 3oldman's algorithm in almost al! types and timings of

failures. This may Just be an ancmaly found in small deadlock ccles,

cecause - " -zr and more =omlex scenarios, it- would 'rear -hat

more sites -would be involved in detection, and that there would be

some luplication of information. As the number of transactions /and

resources) involved in a deadlock cycle increases, more blocking pairs

and pCtential blocking pairs will be sent to more sites, i.e., the

number of sites detecting the deadlock is increasing with the number

of transactions involved in the deadlock and with the deadlock tonolo-

Clt omrlexitf.j. Thus there will be more chance of a deadlock

..ein._ detected, as more parallel ietection activity oill be in tro-

:ress. "t appears, then, that as the site and complexity of leadlock

increases, -he robustness of this algorithm increases. However, as

-oinoed out by liar and -hattuck, the effect which Jligor and That-

Taczc point out of rule 2.2 discarding information too early may have

some Lmract on the increased robustness.

2. 1 ARCK' S DISTRIB= 2 DE DEXZ DE=.-TICN ALWCRI .

7n ,C-BEO , bermarck presents a distributed deadlock ietec-

t:ir'. air '-.centralized algorithm is oresented by 'bermarck and

3eeri in ' c , but it is not discussed here because no mention is

mae :In that paner about a backu- capability if the site containing

-he centr*-lized deadlock etector fails. bermarck's li-stributed

i -it .omstrcts ransaction-*faits-for '7F- Tarh at each 3ie.
a "ch site -cm..... eadlock detection si.multaneously, o-sslnr

.a' " - I -.n- ns:l-!l.a aneVlZn7

information to one other site. 'eadlock ietection activ.t.' a a 3ite

may become -emorarily inactive antil receimTt Df new infrmation from

another site. bermarzk states that in 7orac.tice, Zy.chrcn:za-

tion (not necessarily precise) between sites would be roug.ly con-

.rolled by an agreed-upon interval between deadlock detection itera-

tions, and by timestamrs on transmitted messages. .cdes in the -ri

rerresent transacticns, and ed.e rerese.t a -u its-f.r-

transaction '7fT_") situation. A 'tring' is a list of -f' -rfna-

tion which is sent frcm one site o one or more sites. . tr-n2ac-,in

may migrate from site to site, in which case an 'agent' renresents the

transaction at the new site(s). A comunication link is a!So esta-

blished between agents of a transaction. These communication links

are represented by a node called 'External.' An agent which is expect-

ed to send a message is shown in the VF graph by EX->T, while an

agent waiting to receive is shown by T->aZ. Although Cbermarck's

algorithm includes the resolution of ieadlocks, only the detection

part will be considered in this paper. Transaction ;1's are network

unique names for transactions, and are lexically ordered. '-or exam-

ple, TI < T2 < 17). The steps performed at each site are:

1. Build a TWF graph using transaction to transaction wait-for
relationships.

2. Cbtain and add to the existing MR. graph a/y 'strins'
transmitted from other sites.

a. 7or each transaction iientified in a 3trinz, :reate ai
node in the v7F if none exists in this site.

b. For each transaction in the string, starting with the
first (which is always 'external', create an edge to the
node representing the next transaction in the string.

3. Create wait-for edges from 'external' to each node rerresent-
ing a transaction's agent ,rhioh is exnec-ed to -en :n _i.
corummnication link.

9. reate a "*F edge from each node renresenting a -ra.2Sc-i_:n's

• -ent wnich is waiting to receive from a cormunicatior link.

to ' external. '

. Ana:yze the zrach for cycles.

3. After resolving all cycles not involvinz 'external', if -he
trarnsaction fD of the node for which 'external' waits is
_reater than the Transaction :D of the node waitinR for
'external', then

a. Transform the cycle in-o a string which starts with
' exterral', followed by each transaction 1: in ':he c.. cle,
e..i. with the transaction :: of the node waitin for
' external'

b. send the string to each site for which the transaction
terminating the string is waiting to receive.

in his proof of correctness, Obermarck shows how the alo-

rihm can detect false deadlocks because a string received at a site

may no longer be valid when it is used. le discusses two methods of

handli4 g false deadlocks; treat them as actual deadlocks(if they 4on't

occur too often), or verify them by sending them around the network

and have each site verify them.

A B

~###### #####

:10000,00i T1 T

Figure 4

Figure 4 shows a global picture of the system, includina -he

!onmunicat4icn link.s established between agents, for -he initial 2ondi-

ti-:ns of our ixamle. The agents of 21 at sites 3 o .A have

4 ~'a~e n

q .4p

;erformed work used P2 and R.53, and are faiting for the next request

from TI at site A. TI at site A is waiting for its agent at site D,

.which is in resource-wait for 74. Timur e 5 shows the actions of t s

algorithm in an environment of no errors. As can be seen, it success-

fuly detects the deadlock.

Site A Site B Site Site D

-4 reauests 53
.n agent of

T4 is formed

1,3,4: each site starts deadlock detection qnd builds WF graph.

T1 ->-X TI ->EX T. 1 - K - -7 Y11-T

22i t2L'
5: list elementary cycles

Toi->-7(-T1 ->T4->T1 ->EX EK->TI ->T4->-ZE

6: form string

Send to A.
2: 114<-+

'21 ->MC

5: Form string

Send to D.
2:

Y->T->T4

5: Deadlock detected

Figure 5

bermarck assumes that messages sent sre received. This is

essential to the correctness of this DDA, because it is easy to see

what hadcens if a -nessaae is lost. :f -he string 'C,4,T from site

C to A, or from A to D were lost, leadlock detection activit7 "-icu

4o,

caze ;iithout detecting < '-e 4.eadlbock. --he ise o: aaent s to rerresent

tnsacton __hio hav Lt't 3,-er site a w th -Atohe

nodes of tye s a or bo, if we subs7tit,'ute lagents ' for 'trarsactiors i

our iefiritions at the 'oe-airnring of this sectio*n. 3it 2 wcuOi be OrT

e xamnle of' a ty-.e a site, while the other three Sites -..,ul i ' bell

'-:7e bSites.

"a-* e -.n site 3wo' h ave :oefc n he heaor

tte :-A. A fa i 7Ure at 3sit1e s A, 3 or 2wculd either h-ave no e ffectr, arn

'Xetermined -effect, or 2ause deadlock letec--icn actf-vity, to cease,

lerendina on -he time of the failure. For exarinle, if site 2 failed

ceoesending the string ,:i to site A, deadlock detection

activity wouli cease. :fsite A (or D) failed before the strinz

was sent to them, the tranjsmitting site would recogniZe th

:a-ure, but its action in that eventuality7 is not included in the

ste-cs of the DDA. -f site 2 failed a2-er sending the string, the

ietec-rion activit-y would continue, and the deadlock -would be letected.

This DDA anrears to be notentia-llv more robust --,.a the ore-

,vous two. ah site contains and retains more information in its a

andh o all sites start detection activity simultaneously, and

noteia2c;j stay irnvoled for the entire detection %rocess. The use

?'f the lexical orderirs7 o)f nodes -was f-O r yotimization o' the number of

neSsa-ses trnoit.. fhszntan rere lite , te 3tri-n.Os

wculi he9 sent t all :z,-zs onvolved fro -l sts n hc a : ov l

ex-,Sted. :nour examrle, this woul d have iilfowed s3ites A an~d D to

so'mult aneouslyr detect .!-deadlck. The -DA -would be :!Iearld, nore r01bust,

o-ut7 the overhead gvoulI *-e tratr.T its e xistina form, t :sLA's

-rcbustrness :-3 sim7ilar -- e oerevicisi~ibs 'ecaTz3 it isessen-

t~aJ-~eoemtq~~e.n he eAdlXo.

i AICRTI OF IISAI AND =CRL 2 .

n ASA,2 ,Tsai and _elford cresent a distributed deadlock

detection algorithm. rhey utilize a "Reduced Transaction-Resource"

(RTR) graph, which contains only a subset of the transaction resource

prarh, b'ut has all relevent 7UJP edges. 'Todes in the RTR zraph can be

transactions or resources. The algorithn Lses a concert the authors

1 a "re__"-ig nair", which Is the basic "nit of infornation 7a
.. .ite :c si e -i _. .-n

_y site o site. a oath Ti •.. ..h can be formed by following _-,

edges, and i'f -here is a request edge (n, m), then i "reaches" R_-,

and 2i,Rm) is a "reaching pair." Five types of messages are sent

between sites: reaching messages, nonlocal request messages, alloca-

tion messages, release-request messages, and releasing messages. The

non-local request messages include a list of all resources currently

held by the requesting transaction. Five different types of edges are

dist-inuished in the R graph: requesting edges, allocation edges,

,F edges, resource reaching edges and transaction reaching edges. A

global timestamp is also used to establish an ordering of events.

This timestamn is used on allocation, request and reaching messages,

and on allocation and reaching edges in -he RTR graph. The notation

used in the algorithm is:

TS(M): timestamp of a message
TS(C.: current system time
TS'A): timestamt of an allocation edge
TS(R): timestamp of a reaching edge
=/=: not equal to
Sorig: Site of origin

The 3teps of the algorithm 'as executed at site 2k) are:

Step 1: {A transaction T enters the system reuestina a non_.ocal
resource R Add reiuest ed'i ',. to ?-2 rarh. Send re-
iuest messaie ',R', ,' 2 o crig,.7'?., -here ?' is -he set
,f all resources allocated -, c, -x.d .2, = -'. '.

.ac' 7SA, attached, and -.' is em.-; ifs

-. , '.9

Steep !a: jA :ransaction 7 releases a nonloca resource 3) _rase edge
R,_ in the RTR zrar.. Send a release-request messaqe.,'-R,

to cria('.

Zter 2: 1A transaction 7 enters system requesting local resource ':
.o to ste I.

'teo 2a: IA ransaction T releases a local resource 3) Erase edgeR,T
in zraph. :--" here is any transaction T' waiting for?,
then bein

Add allocation edge ,",T) to RM. grach with S(IAI
.'. . Zend alocation message :' I 'S "it " :T

to -oriz- 1'j if Zcri-YU" Zk. end.

ten : }A reaues messe ,T,R',R, ' . is received} Add allocation
edges (Bi,- for each Ri in R' to RTR rarh. !o to sten -1.

Step 3a: [A release-request message (R,T) is received} 3rase alloca-
tion edge (R,T) in R-"R graph. Send releasing message !m,'
to 2orig(). f there is any transaction YI waiting for R,
then begin

Add allocation edge (R,T') to RTR graph with TsA , =
TS(C). Send allocation message R,',TS) to Sorig("'
if Sorig(T') =/= Sk. end.

Step 4: if R is not held by any transaction, then begin
Add allocation edge (R,T) with -S(A)=TS(C) -o RTR
graph. If Sorig(TY =/= Sk, then send an allcation .mes-
sage ',T,'S) with - to Sorig(T). end.

else begin
Add requesting edge ,,R. to RTRI raDh. Suppose R is
held by transaction T'. Add edge (T,T') to R_ graph.
If there is a cycle, deadlock has been detected, else
go to step 5. end.

Step 5: Ireachina message generation stepw if there are two edges
~,,' and TT, ; added to the graph, and if is... is
path obtained by following the NP! and transaction reaching
edges, then set X =R" if T"_ has outgoing edge to R11, else
set X = R. For all transaction Ti in R- graph reaching :1
via T, do begin

-f 2 holds any resource 7' with Soriz(T_; --=
Zcrig,,R' and Sorig(B'R =/= 7k, then Send a reachinz
message .,X.) to Sorig(3P. if Sari i ==
and 2 -/- , then send a reacning messaae v to
Sorig(Ti). :f Sorig(Ti) =/= Sk and Ti = T andX =
then send a reaching message 'i,X,TS to t orig
The TS in the reaching message, is set to .S(C if trig-
gered by a local request, and set to T,,) of the , or-
local request or reaching =essaee otherwise.

Ste.o 6: iAr. allocation messae t , is receivedl :f R is an ent.:n
in the graph, then '-egin

Erase allocation eda 'B,' and all reachina eldes
" ,R' -with ' K (<S7,"' and the 2rresrondin 7%-7

-?--'- "n w" --- =---' n -if--

they exist, where T' == T. Chan requesting edge(,R) to allocation edge IR,T i Ts(A) = k..
,3 exists, and for each resource reaching edge
Y'", add the transaction reachina edge T , .f

-ori (T) = Sk, wake up transaction T. end.

Step 6a: JA releasing message (R,T) is receivedl If Sorig(T) = Sk,
wake upD transaction T.

Ztep 7: IA reaching message (T,R,TS) is receivedl f there exists an
allocation edge (R,TI) in the graph with TS(M) < TS(and
m I- T, -hen skip this steD, else begin

Add resource reaching edge 'T,R' to the RT? rarn.
i is held by transaction T', then add -he transaction

reaching edge (T,TI) to the granh. 'f there is a oycle
in the araph, there is deadlock K -o to step 3?, other-
w.ise go to step 5. end.

$tep 9: ja deadlock has been detectedf Take appropriate action.

Figure 6 shows the starting WF graphs and the actions of the

DDA resulting from the request by transaction T4 for resource R3. An

important item to note is that as soon the request is made, step 1

adds sufficient information to the WF raph to detect a deadlock, but

does not check for deadlock, so the request is sent to site C and the

algorithm continues. The obvious thing to do would be to add a check

for a deadlock cycle in step one, but on closer analysis, this check

may lead to detection of false deadlocks (if, for example, TI had just

released R3 but the ressage had not yet been received by site D.

Therefore the algorithm in its present form "i.ll be analyzed. The

only message sent by this algorithm in this example is the request

message 1 "f i was lost, the current alorithm wcud

cease detection activity without detecting deadlock. in this in-

stance, if the algorithm checked for deadlock in step I, it would have

been detected with no messaaes required.

!,

.1 -

Si'te A Site 3 Site C' Site D

1i <K-?2 --.2 21 <..R3 '4<-R4

7 --->R4 +--->R4
---£4 P2

---- R3

l' 4 recuests R7)

: add ':4,0'
send B' , -

+-_!
It3

3: add (R4,74)
4: add (4,R3)

add ,T,
: ADLC'K DrTECTMD

T! <-.R7<--+

Fiztu-e

For this DDA, sites can be of -7e b, 1 or e. uites A and

are tyne b and sites 3 and C are tye 1. -his example has no typ e

sites, but step 5 of the algoritm could send reaching messages to

sites not involved at all. Those sites would execute a ster or two f

The aiaorithm, but: not be intimately involved .n the actual leadlock

letec'tion. n this example, a failure of s-ies A or 3 ' tpr.es a and

respectively) would have no effect on the detection of the ieadlock.

The efec* ' f a failure of site C before the reaching message was sent

to :anno: be letermined because the DA includes no instr'ctos

f.r -at event. A failure of site 3 after receiving the reachin; tes-

ze -'. in a essatn f e.act t. :f the t...c-

-r a a 'ros

.. . Is =~nmnnnn = I uII n

site C at any time would have no effect on deadlock detection. The

timing of the failure would also determine the behavior of the :DA if

site D failed. Tf site D failed before sending the request message,

detection activity would cease, while if the message had been sent,

deadlock would still be detected.

7or our example, this DDA appears to be about the same level of

robustness as the other alzori ths, excert that each site 2 n.ai.ns and

retains more information than in other DDA's. This indicates that it

should be more robust. The algorithm in the case of our example w-as

able to detect the deadlock with only the resource request message.

As deadlock cycles become more complex, it appears that this algorithm

will also become more robust, even more so than Tbermarck's, because

this DDA retains more information, and it will send reachina nessages

to any site potentially involved in the deadlock. 2etection activity

will occur simultaneously in those sites receiving reaching messages.

he impact of the inclusion of a cycle detection in step 1 may have

adverse effects on the correctness, but it might greatly enhance the

robustness of the DDA.

il. CN'USIONS

The algorithms discussed in the previous section can be loosely

ranked by their robustness. 3oldman's algorithm is the least robust,

because it is always executed sequentially (unless the requests occur

simultaneously, as discussed previously). Thus it is always dependent

on a single node. bermarck's algorithm starts deadlock detection

Izmultaneously at Il. sites, and subsequently passes information in a

.exical manner because of the message optimization. For our example,

-this resul- ' in a zecuenti al detection, althou,- f:or lar~er leadlcckc

.. .m9 mm "

cycles, i' shouli have some parallel detection activity occur ng. The

: enasce-untz a.igorihm starts letection at the site Where ,he

deadlock occured, and deadlock detection is subsequently conducted at

sites which are potentially involved. The Tsai-Belford algorithm is

invoked each time a resource is requested. Deadlock detection -an

azrear concurrently at a!l sites potentially involved in the cycle.

" arcears -ere roust thran -,- -ease-,=n,-z "eoritrn ecause tcre

irformation is held at each site.

;ir analysis suppor-ts the r'atrher obvious conclusion that robust-
ness is inversely related to it's cost. The ai-Belford algorithm

appears more robust than bermarck's algorithm, for example, but it

maintains larger 'F graphs at each site, and is invoked each tine a

resource is requested, in order that the WF graphs contain sufficient

information.

For the example we used to analyze the four algorithms in section

5, the behavior of each of those algorithms in the nresence of errors

is almort identical. -ecause our deadlock cycle only involved 2 tran-

sactions, those algorithms which are potentially more robust in the

presence of larger cycles did not have time to develop their robust-

ness. :n other -words, for a short deadlock cycle, all the algorithms

converzed within approximately the same length of time (two or three

iterations.) -hort cycles of 7enrth 2 Dr . are more orobable in exist-

ing applications, so all the above algorithms are approximately e: qual-

ly robust in :urrent applications. :n fature applications (informa-

tion .,tility programs, for example), however, we expect a much nid.er

proab~i~ i -3f more complex deadlock cycles, which will reauire a more

: ,-A. cnversely, however, as -he number of transactions 'and

3i-es :ncreases, it will be imrort.ant c -.se a minimm 2ost :DA.

Work is currently in progress on a new robust distributed deadlock

detection algorithm.

INN"

References

FB I C. Beeri and R. 2bermarck. A Resource Class indenendent 7eadlock
Detection Algorithm. Presented at Seventh international Conference on
Very large Data Bases, September 1981.

!Z 30] V. 2ligor and 3. Shattuck. "On Deadlock Detection in Distrbuted
Systems." Trans on Software 3nz, Vol SE-6, September, 10, no
435-440.

.... J7' i.. . "Deadlock Detection in ?,omruter :-e-torks." Dech i2.
report, S/R-- 35, Lab of 'S, :1, September, 197.

jrA-73 J. Gray. "Notes on Data Base Operating Systems." Research Re-
port, :B. Research Division ?.J2188(300C1, February, 1978.

[GRA81] J. Iray. "The Transaction Concert: Virtues and Limitations,"
Tandem 11i1 .3, June 1I81.

[ISL78] S. Isloor and T. Marsland. "An Effective 'On-line' Deadlock Detec-
tion Technique for Distributed Data Base 71anagement Systems," in Proc.
C0D AC 1978, pp 283-288.

LrM79] D. Menasce and R. Muntz. "Locking and Deadlock Detection in Dis-
tributed Data Bases," I= Trans on Soft-are Eng, Vol SE-5, 'o. 3,
May, 1979, pp. 19-5-202.

rOBE80] R. Cbermarck. "Global Deadlock Detection Algorithm." Research
Report, 13M Research Division RJ2845(36131 , June 1980.

FCSAB2] Tsai and 3. Belford. "Detecting Deadlock in a Distributed Sys-
tem." To apear in Proc Z2FOCCM, April 1, 1982.

. -nu, uun -

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93940

Chairman, Code 52Bz 30
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Dushan Badal, Code 52Zd 5
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Robert B. Grafton
Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

David W. Mizell 2
Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

Vinton G. Cerf
DARPA/IPTO
1400 Wilson Blvd
Arlington, VA 22209

CDR R. Ohlander
DARPA
1400 Wilson Blvd
Arlington, VA 22209

Col. D. Adams
DARPA
1400 Wilson Blvd
Arlington, VA 22209

page 30

-'I - . . . -. ,-il l i ,---, m -m [] | i

CAPT. W. Price
AFOSR/NM
Boiling AFB., D.C. 20332

Col. R. SchellI
National Security Agency
Cl
Fort George Meade, MD 20755

Raymond A. Liuzzi
RADC/COTD
Griffiss AFB., N.Y. 13441

Thomas Lawrence
RADC/COTD
Griffiss AFB., N.Y. 13441

LCDR Michael T. Gehl 5
SMC 2405
Naval Postgraduate School
Monterey, CA 93940

Commander, Naval Sea Systems Command 2
Sea OOZ
Naval Sea Systems Command Headquarters
Washington, D.C. 20362

aze 21

DAT

DI

